

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –I <u>COMPLEX ANALYSIS-I</u>

1.	1. A) Show that $w = \log z$ is analytic everywhere except at the origin and find $\frac{dw}{dz}$.	[5M]
	B) If $f(z)$ is the analytic function of z prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\log f(z) = 0$.	[5M]
2.	A) Show that $u = \frac{x}{x^2 + y^2}$ is Harmonic.	[5M]
	B) Find the analytic function whose imaginary part is $e^{x}(x \sin y + y \cos y)$.	[5M]
3.	A) Determine p such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1}\left(\frac{px}{y}\right)$.	[5M]
	B) Find all the values of k, such that $f(x) = e^x (\cos ky + i \sin ky)$.	[5M]
4.	A) If $f(z)=u+iv$ is an analytic function of z and if $u-v=e^{x}(\cos y-\sin y)$, Find $f(z)$ in terms of z.	[5M]
	B) Find an analytic function whose real part is $e^{-x}(x \sin y - y \cos y)$.	[5M]
5.	A) Show that $(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.	[5M]
	B) Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$.	[5M]
6.	A) Evaluate the line integral $\int_{c} (y - x - 3x^2 i) dz$ where c consists of the line segments from	1
	z=0 to $z=i$ and the other from $z=i$ to $z=i+1$.	[5M]
	B) Evaluate $\int_{c} \frac{\cos z - \sin z}{(z+i)^3} dz$ with $C: z = 2$ using Cauchy's integral formula.	[5M]
7.	A) Evaluate $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz$ where c is the circle $ z = 3$ using Cauchy's integral formula.	[5M
	B) Evaluate $\int_{c} \frac{dz}{z^3(z+4)}$ where c is the circle $ z = 2$ using Cauchy's integral formula.	[5M

8. Evaluate
$$\int_{0}^{1+3i} (x^2 - iy) dz$$
 along the paths (i) $y = x$ (ii) $y = x^2$. [10M]

9. A) Evaluate using Cauchy's integral formula $\int_{c} \frac{\sin^{6} z}{\left(z - \frac{\pi}{2}\right)^{3}} dz$ around the circle c : |z| = 1. [5M]

B) Evaluate
$$\int_{c} \frac{\log dz}{(z-1)^3}$$
 where $c: |z-1| = \frac{1}{2}$ using Cauchy's integral formula. [5M]

10. Let C denote the boundary of the square whose sides lie along the lines $x = \pm 2$, Where c is described in the positive sense, evaluate the integrals (i) $\int_{c} \frac{e^{-z}}{\left(z - \frac{\pi i}{2}\right)} dz$ (ii) $\int_{c} \frac{\cos z}{z(z^2 + 8)} dz$ [10M]

Prepared by: RAJAGOPAL REDDY N

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III (16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

<u>UNIT-I</u>

1)	If $f(z) = z^2$ for all z	then $f(z)$ is			[]
	A) Continuous at $z =$	i	B) Not Continuous at	z = i		
	C) Continuous at $z =$	1	D) None		_	_
2)	If $z = x + iy$ then sin	Z =		_	L	l
	A) $\sin x \cosh y - \cos y$	x sin hy	B) sin x coshy + i co	s x sin hy		
	C) $\sin x \cosh y + \cos x$	x sin hy	D) $\sin x \cosh y - i \cosh x$	os x sin hy		
3)	If $f(z) = z ^2$ is				[]
	A) Analytic everywhe	ere	B) not analytic every	where		
	C) Not differentiable	at $z = 0$	D) None			
4)	Cauchy-Riemann equ	ations are			[]
	A) $u_x = v_y \& u_y = -$	-V _X	B) $u_x = v_y \& u_y = v_y$	/ _X		
	C) $u_x = v_x \& u_y = -$	-V _X	D) $u_x = -v_y \& u_y =$	-v _x		
5)	The period of $\sin z$ is	5	5 5		[1
	A) 0	B) π	C) $\frac{\pi}{2}$	D) 2π	L	-
6)	Functions which satis	fy Laplacian equations	s in a region R are calle	ed	[]
	A) analytic	B) not analytic	C) Harmonic	D) None		
7)	An analytic function v	with constant modulus	is a		[]
	A) constant function	B) function of x	C) function of y	D) None		
8)	Imaginary part of cos	z is			[]
	A) sin x coshy	B) $-\sin x \sin hy$	C) sin hy coshy	D) cos x cos	hy	
9)	$\sin iz =$				[]
	A) —isin hy	B) sin hy	C) icos hy	D) isin hy		
10)	The value of k so that :	$x^2 + 2x + ky^2$ may be	e harmonic is		[]
	A) 0	B) -1	C) 2	D) none		
11)	If $w = \log z$ is analyti	c everywhere except a	t z =		[]
	A) 0	B) 1	C) 2	D) 3	-	_
12)	If $z = x + iy$ then cos	S z =			[]
	A) $\sin x \cosh y - \cos y$	x sin hy	B) cos <i>x coshy</i> – i si	n x sin hy		
	C) $\cos x \cosh y + \cos x$	$x \sin hy$	D) $\sin x \cosh y - i \cosh y$	os x sin hy		
13)	The value of k so that .	$x^3 + 3kxy^2$ may be have	armonic is	-	[]
	A) 0	B) -1	C) 2	D) none		-

14)	If $f(z)$ is analytic fun	ction in a simply conn	ected domain D&C is	any simple	r	
	Curve then $\int f(Z)dz$	=	-		L	Ţ
	A) 0	B) -1	C) 2	D) none		
15)	The curves $u(x, y) =$	C_1 and $v(x, y) = C_2$ a	re orthogonal if $u + iv$	' is	[]
	A) analytic	B) not analytic	C) Harmonic	D) None		
16)	If $u + iv$ is analytic the	en $v - iu$ is			[]
	A) analytic	B) not analytic	C) Harmonic	D) None		
17)	A harmonic function is	that which is			[]
	A) Harmonic	B) not analytic	C) analytic	D) None		
18)	An analytic function wi	th constant imaginary pa	art is		[]
	A) constant	B) analytic	C) Harmonic	D) None		
19)	If $f(z)$ is analytic and	l equals $u(x, y) + iv(x)$	(x, y) then $f^1(z) =$		[]
	A) $u_x + iv_x$	B) $v_y - iv_x$	C) $v_y + iv_x$	D) none		
20)	$\cos iz =$				[]
	A) –isin hy	B) sin hy	C) icos hy	D) cos hy		
21)	The period of $\sin z$ is	S	_		[]
	A) 0	B) π	C) $\frac{\pi}{2}$	D) 2π		
22)	If $Lt f(z)$ exists then	n that limit is	2		ſ	1
,	$z \rightarrow z_0$				L	-
	A) Not unique	B) Unique C) Tw	vice D) No	ne	r	-
23)	Solution set of $\sin z =$	018			L]
	A) $z = 2n\pi$	B) $z = n\pi$	C) $z = (2n+1)\frac{\pi}{2}$	D) None		
			2			
24)	If $z = x + iy$ then co	s $z =$			[]
	$(\Delta) \cos \frac{1}{7}$	B) $\sin 7$	(C) COS 7	D) None		
		– –		D) None		
25)	Imaginary part of sin	<i>z</i> =			[]
	A) sin x coshy	B) $-\sin x \sin hy$	C) sin hy coshy	D) $-\cos x \sinh x$	y	
26)	If $f(z) = z^3$ is				г	1
20)	$\begin{array}{c} 11 j (x) x 13 \\ \end{array}$	240	D) not onalytic avany	whom	L	1
	C) Not differentiable	at z = 0	D) Nono	where		
27)	Arg z is	$\operatorname{al} Z = 0$	D) None		г	1
27)	A) Differential in eve	ry domain	B) Not differential an	v where	L	1
	C) Differential only a	t origin	D) None	ly where		
28)	Polar form of Cauchy	-Riemann equations a	D) None		Г	1
20)					L	1
	$\mathbf{A}) \ \mathbf{i} \ \mathbf{u}_r = \mathbf{v}_{\theta} \ , \ \mathbf{i} \ \mathbf{v}_r = -$	$u_{ heta}$	$\mathbf{B}) \ \mathbf{i} \ \mathbf{u}_r = \mathbf{v}_{\theta} \ , \ \mathbf{v}_r = \mathbf{u}$	θ		
	C) $ru_r = -v_\theta$, $rv_r =$	$-u_{\theta}$	D) $ru_r = -v_\theta$, $rv_r =$	u_{θ}		
	$f(z) = z^2 \bar{z}$				г	1
29)	II $\int (x) - x + x + 1s$				L	J
	A) Not differentiable	at $z = 0$	B) not analytic every	where		
	C) Analytic everywhe	ere	D) None			

30)	Real part of cos z is				[]
	A) sin x coshy	B) $-\sin x \sin hy$	C) sin hy coshy	D) $\cos x \cosh x$	'nу	
31)	The period of tanz is	5	-		[]
	A) 0	B) π	C) $\frac{\pi}{2}$	D) 2π		
32)	If $f(z) = \operatorname{Re}(z)$ is		2		[]
	A) analytic	B) <i>not</i> analytic	C) not differentiable	D) None	r	1
33)	A point at which $f(z)$) fails to be analytic is $f(x)$	called		L	Ţ
	A) Singular point of f	(Z)	B) null point of $f(z)$			
24)	C) Non-Singular poin If $f(x) = \frac{1}{2}$	t of f(Z)	D) none		г	Ъ
54)	If $f(z) = \sin z$ is	1	D) A 1		L]
	A) not analytic every	where $a_{1} = 0$	B) Analytic everywne	ere		
35)	The period of the fun	at $z = 0$	D) None		г	1
55)		$(\mathbf{R}) = \mathbf{R}$	$(\mathbf{C}) \frac{\pi}{2}$	D) 2π	L	1
	A) U	D) 11	$C)\frac{1}{2}$	D) 211		
36)	If $z = x + iy$ then sim	ı <i>z</i> =			[]
	A) $\sin z$	B) $\sin \overline{z}$	C) $\cos z$	D) None		
37)	Solution set of $\cos z = 0$	Dis			[]
	A) $z = 2n\pi$	B) $z = n\pi$	C) $z = (2n+1)\frac{\pi}{2}$	D) None		
	x^2 y^2				-	-
38)	$\frac{1}{\sinh^2\beta} + \frac{1}{\sinh^2\beta} =$				L	ļ
	A) 1	B) -1	C) 0	D) 2		
		x^2 y^2			-	-
39)	If $\sin(\alpha + i\beta) = x + iy$	then $\frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha}$	-= γ		L]
	A) 1	B) -1	C) 0	D) 2		
40)	If $e^{\bar{z}} = $				[]
	A) 1	B) $e^{\overline{z}}$	\mathbf{C}) 0	D) e^{z}		
			0,0			

Prepared by: RAJAGOPAL REDDY N

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612) Course & Branch: B.Tech – AG Year & Sem: II-B.Tech& I-Sem Regulation: R16

UNIT-II

COMPLEX ANALYSIS-II

1. A) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residues at each pole [5M]

B) Find the residue of the function
$$f(z) = \frac{1}{(z^2 + 4)^2}$$
 where c is $|z - i| = 2$. [5M]

2. A) Find the residues of
$$f(z) = \frac{z^2}{1-z^4}$$
 at these singular points which lie inside the circle $|z| = 5$
B) Find the residues of $f(z) = \frac{z^2}{z^2 + a^2}$ at $|z| = ai$. [5M]

- 3. A) Determine the poles of the function $f(z) = \frac{z^2 + 1}{z^2 2z}$ and the residues at each pole. [5M]
 - B) Determine the poles and residues of $\tan hz$. [5M]

4. A) Evaluate
$$\int_{-\infty}^{\infty} \frac{\cos ax}{x^2 + 1} dx, a > o$$
 [5M]

B) Find the residue of the function
$$f(z) = \frac{e^{2z}}{z(z-3)}$$
 where $C: |z| = 2$. [5M]

5. Evaluate
$$\int_{0}^{\pi} \frac{1}{a+b\cos\theta} d\theta =, \frac{\pi}{\sqrt{a^2+b^2}}, a > b > 0$$
. [10M]

- 6. Show that $\int_{-\infty}^{\pi} \frac{\cos 2\theta}{1+2a\cos 2\theta+a^2} d\theta =, \frac{2\pi a^2}{1-a^2}, (a^2 < 1)$ using residue theorem. [10M]
- 7. A) Find the bilinear transformation which maps the point's $(\infty, i, 0)$ in to the points $(0, i, \infty)$ [5M]

B) Find the bilinear transformation that maps the point's (0,1, i) in to the points 1 + i, -i, 2 - i in W-plane [5M]

8. A)By the transformation $w = z^2$, show that the circles |z-a| = c (a, c being real) in the Z-plane corresponds to the limacons in the w-plane. [5M]

B) Find the image of the region in the z-plane between the lines $y=0 \& y=\frac{\pi}{2}$ under the

transformation
$$w = e^z$$
. [5M]

9. A)Find the bilinear transformation which maps the points (∞, *i*, 0) *i*n to the points (-1, -1, 1) in w-plane. [5M]
B) Find the bilinear transformation that maps the point's (1, *i*, -1) *i*n to the points (2, *i*, -2) in w-plane [5M]
10. A) The image of the infinite strip bounded by x=0 & x=π/4 under the transformation w = cos z
B) Prove that the transformation w = sin z maps the families of lines x = y = constant into two families of confocal central conics. [5M]

Prepared by: RAJAGOPAL REDDY N

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : ENGINEERING MATHEMATICS (16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

	<u>UNIT-II</u>						
1)	If $I \neq f(z)$ does not avi	$\frac{\text{COMPLEX}}{2}$	ANALYSI	[<u>S-II</u> ogularity		г	1
1)	If $Li_{z \to a} f(z)$ does not exp	ist then $\zeta = \alpha$ is	51	igulaility		L	1
	A) Pole	B) Removable	C) Isola	ted essentia	l D) N	lone	
2)	The function e^z has an i	solated singularity at z	=			[]
	A) 1	B) ∞	C) 0		D) None	_	_
3)	The limit point of a seque	ence of poles of a funct	ion $f(z)$ is			[]
	A) Pole	B) Removable	C) Isola	ted essentia	I D) N	lone	
4)	The value of $\int_{c} \frac{e^{z}}{(z-3)^{2}} dz$	z, C: z = 2 is				[]
	A) 1	B) 0	С) <i>π</i> і		D) N	Jone	
5)	The pole of $f(z) = \frac{1}{(z)}$	$\frac{e^z}{(z+3)}$ is				[]
	A) 1,3	B) -1,0	C) 2,3		D) 0, −3		
6)	The pole of $f(z) = \frac{1}{(z-z)^2}$	$\frac{z}{1)(z-3)}$ is				[]
	A) 1,3	B) -1,0	C) 2,3		D) -1, -3		
7)	The pole of $f(z) = -$	$\frac{z+1}{z+1}$ is				ſ	1
	(z-1)	(z-3)	() 2 2		D) 0 2	L	1
0)	$\mathbf{A}(0,5) = \mathbf{A}(0,5)$	1 $1 = 1,0$	2,5		D) 0, -3	г	1
8)	The residue of $f(z) =$	$\overline{(z^2+4)^2}$ at the pole $z =$	= <i>Zl</i> 1S			L]
	A) 22/		\sim 1		\mathbf{D} -1		
	A) $-32l$	B) 321	C) $\frac{1}{32i}$		D) $\frac{1}{32i}$		
9)	The residue of $f(z) =$	$\frac{z^2}{z^4-1}$ at the pole $z = 1$	is			[]
	A) -4	B) 4 <i>i</i>	C)	$\frac{1}{4}$	D) -	1 1	
10)	A pole of order 1 is call	ed				ſ	1
,	A) Simple	B) Not simple	(C) Isolated	D) N	Jone	1
11)	If $Lt f(z) = \infty$ then	z = a exists is				[]
	A) Pole	B) Removable	(C) Isolated	N (C	Jone	
12)	If $Lt f(z)$ exists finite	ly then $z = a$ is	sn	gularity	D)1]	1
1-)	$z \rightarrow a$	D	511			L	L
	A) Pole	B) Removable	(C) Isolated	D) N	lone	

		QUESTION BAI	NK 2018	
13) The value of $\int_{C} \frac{dz}{z+2} dz$, C	z = 1 is		[]
A) 1	B) 0	С) <i>π</i> і	D) None	
14) The pole of $f(z) = \frac{e}{(z+4)}$	$\frac{z}{(z+1)}$ is		[]
A) 0,-4	B) 0,4	C) 1,-4	D) -4,-1	
15) The residue of $f(z) = \frac{\epsilon}{(z+z)}$	$\frac{2^{2}}{-4}$ at the pole z=0 is		[]
A) $\frac{1}{4}$	B) 4	C) $-\frac{1}{4}$	D) -4	
16) If $f(z)$ has a simple pole at	$z = a$ then $\operatorname{Res}_{z=a} f(z) =$	-	[]
A) 0	B) $\underset{z \to a}{Lt}(z+a)f(z)$	C) $\underset{z \to a}{Lt}(z-a)f(z)$	D) None	
17) Is cross ration of four points	invariant under the trans	formation is]]
A) Bilinear 18) The image of the line $y = c$	B) Inverse Bilinear under the mapping $w = s$	$z = C$) conformal $\sin z$ is	D) None]
A) Parabola	B) ellipse	C) Hyperbola	D) None	-
19) The cross ratio of the four period $()()$	oints Z_1, Z_2, Z_3, Z_4 is	()()	[]
A) $\frac{(z_1 - z_2)(z_3 - z_4)}{(z_2 - z_3)(z_4 - z_1)}$	B) $\frac{(z_1 z_2)(z_3 z_4)}{(z_2 - z_3)(z_4 - z_1)}$	C) $\frac{(z_2 - z_3)(z_4 - z_1)}{(z_1 - z_2)(z_3 - z_4)}$	D) None	
20) The bilinear transformation A) Inverse points	maps inverse points of a (B) constant	circle into C) singular point	[D) None]
21) The image of the line $y = c$	under the mapping $W =$	$\cos z$ is]]
A) Parabola	B) ellipse	C) Hyperbola	D) None	
22) The type of singularity of the	e function $\frac{1}{1-e^z}$ at $z=2$	2 <i>π</i> i is	[]
A) Simple pole	B) Not simple pole	e C) Isolated essential	D) None	
23) At $z = 0$ $f(z) = \frac{\sin z}{z}$ has	a singularity at which is	s called	[]
A) Simple poleC) Isolated essential	B) D)	Not simple pole Removable		
24) The residue of $f(z) = \frac{e^{z}}{(z-z)^2}$	$\frac{1}{1}z$ at the pole z=0 is		[]
A) 1	B) -1	C) 0	D) None	1
A) Parabola $x = k$	under the mapping $w = s$ B) ellipse	C) Hyperbola	L D) None	Ţ
26) The pole of $f(z) = \frac{z}{(z+4)^2}$	$\frac{z}{z^2(z-1)}$ is		[]
A) 0,-4	B) 0,4	C) 1,-4	D) -4,-1	

27) Under the transformation $w =$ A) Entire w-plane	z^2 is conformal everyw B) Origin	here except at C) Infinite strip	[D) None]
28) The type of singularity of the f	unction $\sin \frac{1}{1-z}$ at $z =$	1 is	[]
A) Simple pole	B) Isolated essential	C) Not simple	pole D) None	
29) $f(z) = \frac{\sin z}{z}$ has a singularity	at $z = 0$ which is called	1	[]
A) Simple pole C) Isolated essential 30) The image of the line $x = k$ un	B) Not D) Rer der the mapping $W = COS$	t simple pole novable S <i>Z</i> is	ſ	1
A) Parabola	B) ellipse	C) Hyperbola	D) None	I
31) The pole of $f(z) = \frac{z}{(z+4)(z+4)(z+4)(z+4)(z+4)(z+4)(z+4)(z+4)$	$\overline{+1}$ is		[]
A) 0,-4 32) If $f(z)$ has a simple pole at Z	B) 0,4 = $-a$ then Re s $f(z)$ =	C) 1,-4	D) -4,-1 []
A) 0	B) $Lt(z+a)f(z)$	C) $Lt(z-a)$	f(z) D) None	
33) If $f(z)$ has a simple pole at z	= -2 then Res $f(z) =$	$z \rightarrow -u$	[]
A) 0	B) $Lt_{z \to -2}(z+2)f(z)$	C) $Lt_{z \to -2}(z-2)f$	(z) D) None	
34) The value of $\int_{c} \frac{dz}{z-5} dz$, $C : z $	=1 is		[]
A) 1	B) πi	C) 0	D) None	
35) The residue of $f(z) = \frac{z^2}{z^2 + a^2}$	at the pole $z = ia$ is		[]
A) $\frac{ia}{3}$	B) $-\frac{ia}{3}$	C) $\frac{a}{3}$	D) $\frac{ia}{2}$	
36) The pole of $f(z) = \frac{z}{z^2 + 1}$ is			[]
$\mathbf{A}) \pm i$	B) 0,i	C) ±1	D) None	
37) The pole of $\int_{c} \frac{z^2 + 2z - 2}{z(z - 4)(z - 1)} dz$	z is		[]
A) 0,4,-1	B) 0,-4,1	C) 0,4,1	D) 0,-4,-1	
38) The bilinear transformation w	$=\frac{az+b}{cz+d}$ is conformal if		[]
A) $ad - bc \neq 0$	B) $ad - bc = 0$	C) $ab-cd =$	0 D) $ab - cd \neq 0$	
39) The pole of $f(z) = \frac{z}{z^2 + 4}$ is			[]
$\mathbf{A}) \pm 2i$	B) 0,2i	C) ± 2	D) None	
40) If $ad-bc=0$ then $\frac{b}{a}=\frac{d}{c}$ the	nen every point of z-plane	e is a	[]
A) Inverse points Prepared by: RAJAGOPAL RE	B) Critical points DDY N	C) singular p	ooint D) None	

[10M]

[5M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –III

- 1. Find a positive root of $x^3 x 1 = 0$ correct to two decimal places by bisection method.
- 2. Find out the square root of 25 given $x_0 = 2.0$, $x_0 = 7.0$ using bisection method. [10M]
- 3. Find out the root of the equation $x \log_{10}(x) = 1.2$ using false position method. [10M]
- 4. Find the root of the equation $xe^x = 2$ using Regula-falsi method.
- 5. Find a real root of the equation $xe^x \cos x = 0$ using Newton- Raphson method. [10M]
- 6. Using Newton-Raphson Method
A) Find square root of 10.B)Find cube root of 27.[10M]
- 7. From the following table values of x and y = tanx interpolate values of y when x = 0.12 and x = 0.28 [10M]

Х	0.10	0.15	0.20	0.25	0.30
У	0.1003	0.1511	0.2027	0.2553	0.3093

8. A) Using Newtons forward interpolation formula., and the given table of value

Х	1.1	1.3	1.5	1.7	1.9
f(x)	0.21	0.69	1.25	1.89	2.61

Obtain the value of f(x) when x=1.4

B) Evaluate f(10) given f(x) = 168,192,336atx = 1,7,15 respectively, use Lagrange Interpolation. [5M]

9. A) Use Newton's Backward interpolation formula to find f(32)

- given f(25) = 0.2707, f(30) = 0.3027 f(35) = 0.3386, f(40) = 0.3794 [5M] B) Find the unique polynomial P(X) of degree 2 or less such that
 - P(1) = 1 P(3) = 27, P4 = 64 using Lagrange's interpolation formula. [5M]
- 10. A) Using Lagrange's interpolation formula, find the parabola passing through the points (0,1),(1,3) and (3,55) [5M]
 - B) For x=0,1,2,3,4; f(X) = 1,14,15,5,6 find f(3) using forward difference table. [5M]

Prepared by: RAJAGOPAL REDDY N

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

 Subject with Code : ENGINEERING MATHEMATICS-III (16HS612)

 Course & Branch: B.Tech – AG
 Year & Sem: II-B.Tech& I-Sem

 LUNIT-III

1)	Example of a transcendental equation		[]
	A. $f(x) = x \log x - 1.2 = 0$ B	$f(x) = x^3 - x - 1 = 0$		
	C. $f(x) = x^2 + x - 7 = 0$. None		
2)	If first two approximation x_0 and x_1 are	roots of $x^3 - 9x + 1 = 0$ are 0 and 1	by Bisecti	on
	method then x_2 is		[]
2	A.1.5 B. 2.5 C. 0	.5 D. 3.5	F	-
3)	Example of a algebraic equation	c() 3 1 0	L	J
	A. $f(x) = x \log x - 1.2 = 0$	B. $f(x) = x^3 - x - 1 = 0$		
	C. $f(x) = x^2 \tan x + 1 = 0$	D. None		
4)	In case of Bisection method, the converge	ence is	[]
5	A. linear B. 3	C. very slow D	. quadratic	1
5)	A Solution of algebraic or transcendental	equation B Integration of a	function]
	C. Differential of a function	D. Solution of a fu	nction	
6)	For method of solution of equa	tions of the form $f(x) = 0$ approxima	tion	
	x_0 is to be very close to the root and f	$(x_n) \neq 0$	[]
	A. Bolzano B. Newton-Raphs	on C.Secent	D. Chord	
7)	If the two roots are 1 &2 of $x^3 - x - 4 =$	0 by Bisection method then x_1 is	[]
	A. 1.5 B. 2.5 C.	0.5 D. 3.5		
8)	Example of a transcendental equation	$\langle \cdot \rangle = 2$	[]
	A. $f(x) = c_1 e^x + c_2 e^{-x} = 0$ B. $f(x) = x^2$	$+x-7=0$ C. $f(x)=x^2+5x-7=$	0 D. Nor	ne
9)	If first two approximation x_0 and x_1 are	roots of $2x - \log_{10}^{x} = 7$ are 3.5 and	l 4 by	
	Bisection method then x_2 is		[]
	A. 1.75 B. 2.75	C. 3.75 D. 4.75		
10)	If first two approximation x_0 and x_1 are	roots of $x^3 - 9x + 1 = 0$ are 0 and	1 by	
	Bisection method then x_2 is		[]
	A.1.5 B. 2.5 C. 0	.5 D. 3.5		
11)	If first two approximation x_0 and x_1 are	roots of $x^3 - x - 4 = 0$ are 1 and 2	by	
	Bisection method then x_2 is		[]
	A.1.5 B. 2.5 C. 0	.5 D. 3.5		

12) The order of convergence in Newton-Raphson method is A. 1 C. 0 D.2 B. 3 13) The Newton-Raphson method fails when 1 A. $f^{1}(x)$ is negative B. $f^{1}(x)$ is zero C. $f^{1}(x)$ is too large D. Never fails 14) In case of Bisection method, the convergence is 1 A. linear B. 3 C. very slow D. quadratic 15) Under the conditions that f(A) and f(B) have opposite signs and a
b, the first approximation of one of the roots f(x)=0, by Regula-Falsi method is given by 1 A. $x_1 = \frac{af(a) - bf(b)}{f(a) - f(b)}$ B. $x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$ C. $x_1 = \frac{af(a) + bf(b)}{f(a) + f(b)}$ D. $x_1 = \frac{af(b) - bf(a)}{f(b) + f(a)}$ 16) For ----- method of solution of equations of the form f(x) = 0 approximation x_0 is to be very close to the root and $f(x_n) \neq 0$] A. Bolzano B. Newton-Raphson C.Secent D. Chord 17) In the bisection method of solution of an equation of the form f(x) = 0 the convergence of the sequence $\langle x_n \rangle$ of midpoints to a root of f(x) = 0 in an interval (a,B) where f(A)f(B) < 0is 1 ſ B. Not assured but very fast A. Assured and very fast C. Assured but very slow D. Independent on the sequence of point 18) Newton-Raphson method is used for 1 A. Solution of algebraic or transcendental equation B. Integration of a function D. Solution of a function C. Differential of a function 19) In the method of False position for solution of an equation of the form f(x) = 0 the convergence of the sequence $\langle x_n \rangle$ iterates to a root of f(x) = 0 is 1 ſ A. Assured and very fast B. Not assured but very fast C. Assured but slow D. Independent on the sequence of point 20) 12. In Newton – Raphson method we approximate the graph of f by suitable 1 **B**.Tangents C. Secants D. Parallel A. Chords 21) Newton's iterative formula for finding a root of f(x) = 0 is 1 Γ B. $x_{n+1} = x_n - \frac{f(x_n)}{f''(x_n)}$ A. $x_{n+1} = x_n + \frac{f(x_n)}{f''(x_n)}$ C. $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$ D. $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ 22) Newton-Raphson method is also called] A. Method of tangent B. Method of false position C. Method of chord D. Method of secants 23) Among the method of solution of equation of the form f(x) = 0 the one which is used commonly for its simplicity and great speed is ---method 1 A. Secant B. Regula falsi C. Newton – Rasphson D. Bolzano

QUESTION BANK 2018

24) The Regula Falsi method is related to at a point of the curve	[]
A. Chord B. Ordinate C. Abscissa D. Tangent 25) The Newton Baphson method is related to at a point of the curve	ſ	1
A. Chord B. Ordinate C. Abscissa D. Tangent	L	1
26) Newton's iterative formula for finding the square root of a positive number N is	[]
A. $x_{i+1} = \frac{1}{2} \left(x_i - \frac{N}{n} \right)$ B. $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{n} \right)$		
$\begin{array}{c} 2\left(\begin{array}{c} x_i \end{array}\right) \\ \left(\begin{array}{c} x_i \end{array}\right) \\ \left(\begin{array}{c} x_i \end{array}\right) \\ \left(\begin{array}{c} x_i \end{array}\right) \end{array}$		
C. $x_{i+1} = \left(x_i - \frac{N}{x_i}\right)$ D. $x_{i+1} = 2\left(x_i + \frac{N}{x_i}\right)$		
27) Newton's iterative formula for finding the reciprocal of a number N is [-]
A. $x_{n+1} = \left(x_n - \frac{N}{x_n^2}\right)$ B. $x_{n+1} = x_n \left(2 - \frac{N}{x_n}\right)$		
C. $x_{n+1} = x_n (2 - Nx_n)$ D. $x_{n+1} = x_n (2 + Nx_n)$		
28) Regula- falsi method is used for	[]
A. Solution of algebraic or transcendental equationB. Integration of a functionC. Differential of a functionD. Solution of a function	tion	
29) The cube root of 24 by Newton's formula taking $x_0 = 3$ is	[]
A.1.889 B.2.889 C.5.889 D.4.889		
30) The square root of 35 by Newton's formula taking $x_0 = 6$ is	[]
A.7.916 B.5.916 C.6.916 D.4.916		
31) If first two approximation x_0 and x_1 are roots of $xe^x = 2$ are 0 and 1 by		
Regula-falsi method then x_2 is	[]
A. 0.13575 B. 0.33575 C. 0.73575 D. 0.53575		
32) If first two approximation x_0 and x_1 are roots of $x^3 - x - 4 = 0$ are 1 and 2 by	7	
Regula-falsi method then x_2 is	[]
A.4.666 B. 2.666 C. 3.666 D. 1.666 33) Newton's iterative formula for finding the pth root of a positive number N is	Г	1
$1 \begin{pmatrix} \dots & N \end{pmatrix}$	L	J
A. $x_{n+1} = \frac{1}{p} \left((p-1)x_n + \frac{1}{x_n^{p-1}} \right)$ B. $x_{n+1} = \frac{1}{p} \left((p-1)x_n - \frac{1}{x_n^{p-1}} \right)$		
C. $x_{n+1} = p\left((p-1)x_n - \frac{N}{x_n^{p-1}}\right)$ D. $x_{n+1} = \left((p-1)x_n - \frac{N}{x_n^{p-1}}\right)$		
34) The general iteration formula of the Regula Falsi method is	[]
A. $x_{n+1} = x_n + \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$ B. $x_{n+1} = x_n + \frac{x_n + x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$	$f(x_n)$	
C. $x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$ D. $x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) + f(x_{n-1})} f(x_n)$	(x_n)	

35) If first approximation root of $x^3 - 5x + 3 = 0$ is $x_0 = 0.64$ then x_1 by Newton-Raphson method is A.4.6565 B. 2.6565 C. 3.6565 D. 0.6565

36) Newton's iterative formula to find the value of \sqrt{N} is

A.
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$$

B. $x_{n+1} = \frac{1}{2} \left(x_n - \frac{N}{x_n} \right)$
C. $x_{n+1} = \left(x_n - \frac{N}{x_n} \right)$
D. $x_{n+1} = 2 \left(x_n - \frac{N}{x_n} \right)$

37) If first approximation root of $x^2 - 10 = 0$ is $x_0 = 3.8$ then x_1 by Newton-Raphson method is A.0.215 B. 1.215 C. 2.215 D. 3.215

38) Newton's iterative formula to find the value of $\sqrt[3]{N}$ is

[]

1

1

1

1

ſ

Γ

A. $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x_n^2} \right)$	B. $x_{n+1} = \frac{1}{3} \left(2x_n - \frac{N}{x_n^2} \right)$
$C. x_{n+1} = \left(2x_n - \frac{N}{x_n^2}\right)$	D. $x_{n+1} = 3\left(2x_n + \frac{N}{x_n^2}\right)$

39) 36. If first two approximation x_0 and x_1 are roots of $2x - \log_{10}^x = 7$ are 3.5 and 4 by Regula- Falsi method then x_2 is [] A. 1.7888 B. 2.7888 C. 3.7888 D. 4.7888 40) If first approximation root of $\cos x - x^2 - x = 0$ is $x_0 = 0.5$ then x_1 by

Newton-Raphson method is A.0.5514 B. 1.5514 C. 2.5514 D. 3.3314 [

Prepared by: RAJAGOPAL REDDY N

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612) **Course & Branch**: B.Tech – AG Year & Sem: II-B.Tech& I-Sem Regulation: R16

UNIT -IV

2 3 4 5 7 Х 0 6 8 1 Y 20 30 52 77 135 211 326 550 1052 2. A)Fit the exponential curve of the form $y = ab^x$ for the data Х 1 2 3 4 17 27 7 11 Y B) Fit a straight line y=a+bx from the following data [5M] Х 0 2 3 1 4 Y 1 3.3 4.5 1.8 6.3 3. Fit a second degree polynomial to the following data by the method of **least squares** [10M] Х 0 2 3 4 1 6.3 2.5 Y 1.8 1.3 B) Fit a straight line y=ax+b from the following data [5M] Х 6 7 7 8 8 8 9 9 10 5 5 4 4 3 Y 4 5 3 3 4. A) Fit a Power curve to the following data Χ 5 2 3 4 6 1 2.98 4.26 5.21 6.10 6.80 7.50 Y B) Fit a second degree polynomial to the following data by the method of **least squares** [5M] 0 Х 1 2 3 4 Y 5 10 22 38 1

1. Fit the curve $y = ae^{bx}$ to the following data.

[5M]

[10M]

[5M]

5. A) Fit the cu	rve of the form	$y = ae^{bx}$				[5M]
X	77	100	185	239	285	7
Y	2.4	3.4	7.0	11.1	19.6	
B) Fit the cu	rve of the form	$y = ab^x$ for				[5M]
X	2	3	4	5	6	7
Y	8.3	15.4	33.1	65.2	127.4	
6. A) Using SirB) Evaluate	mpson's $\frac{3}{8}$ rule $\int \sqrt{1+x^3} dx$ taki	e, evaluate $\int_{0}^{6} \frac{1}{1+1}$	$\frac{1}{x^2} dx$ g Trapizoidal ru	le	1	[5M] [5M]
7. Dividing the 8. Evaluate $\int_{0}^{1} \frac{1}{1}$	range into 10 e $\frac{1}{x} dx$	qual parts ,find	the value of $\int_{0}^{\pi/2}$	$\int_{0}^{2} \sin x dx$ using S	Simpson's $\frac{1}{3}$	rule. [10M]
i) By trapezoi	dal rule and Sin	properties $\frac{1}{3}$ rule	·.			
ii) Using Sim	pson's $\frac{3}{8}$ rule a	and compare the	e result with act	ual value.		
9. A) Compute $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{1}{3}$ rule with 10 subdivisions.						[5M]
B).Find $\int_{3}^{7} x$	$^{2}\log xdx$, usin	g Trapezoidal	rule and Simpso	on's rule by 10	sub divisions.	[5M]
10. A) Evaluate	e approximately	y,by Trapizoidal	rule, $\int_{0}^{1} (4x - 3x)$	$(x^2)dx$ by taking	n=10.	[5M]
B) Evaluate	$\int_{0}^{1} e^{-x^2} dx \text{tak}$	ing $h = 0.25$ usi	ng Simpson's	$\frac{1}{3}$ rule		[5M]

Prepared by: RAJAGOPAL REDDY N

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –IV

1.	The $(n+1)^{th}$ order difference of a polynomial of n	th degree is	[]
	A) Polynomial of n^{th} degree B) polynomial of	of first degree C) constant	D) Zero	
2	The n^{th} order difference of a polynomial of n^{th}	degree is	Ĩ	1
2.			L	1
	A) Polynomial of $(n-1)^{th}$ degree B) constant	C) polynomial of first degree	D)None	
3.	While evaluating a definite integral by Trapezoida	al rule, the accuracy can be i	ncreased	
	by takingnumber of subintervals.		[]
			DIN	
	A) Larger B)smaller	C) Medium	D)None	
4.	In Simpson's 3/8 rule the number of subintervals	should be	ſ	1
	A) Even B) Odd C	C) Multiples of 8 D) Mu	ltiples of 3	1
5.	. In Simpson's 1/3 rule the number of subintervals	s should be	1	1
	A) Even B) Multiples of 3	C) Odd	D) None	-
6.	The following formula is used for unequal interva	lls of x values	[]
	A) Newton's forward B)Langrange's C	C) Newton's backward	D)None	
7.	The principle of least squares states that		[]
	A) Sum of residuals is minimum	B) Sum of residuals i	s maximum	
	C) Sum of squares of the residuals is minimum	D) None		
0			r	-
8.	If $y = a_1 + a_2 x$ the second normal equation by le	east square method is	[]
	A) $\sum y = na_1 + a_2 \sum x$ B) $\sum xy = a_1 \sum x + a_2 \sum x$	$\sum x^2$ C) $\sum xy = na_1 + a_2 \sum$	$\int x D$ None	
9.	If $v=6.077$, $Y=\ln(v)$ then $Y=$		- [1
	A) 0.8045 B) 1.8045	C) 2.8045	D) 3.8045	
10	If $y=4.077, Y=\ln(y)$ then $Y=$	<i>,</i>	[]
	A) 1.040 B) 1.405	C) 0.4059	D) None	
11	If $y=8.3, Y=$ logy then $Y=$		[]
	A) 0.9191 B) 9.191	C) 0.0919	D) None	
12	If $y = a + bx$ the first normal equation by least squares of $y = bx$.	uare method is	[]
	A) $\sum y = na + b \sum x$ B) $y = a \sum x^2 + b \sum x^3$	C) $\sum y = na + b$	D) None	
13	If $y = a + bx + cx^2$ the second normal equation by	least square method is	. []
	A) $\sum xy = a\sum x + b\sum x^2 + c\sum x^3$	B) $\sum y = a \sum x + b \sum x^2 + c$	$\sum r^3$	
	$() \sum \sum \sum \sum 2 $	$\sum_{j=1}^{n} a \sum_{j=1}^{n} a $		
	$\sum xy = na + b \sum x + c \sum x^2$	$\sum xy^2 = a \sum x + b \sum x^2$	$+c\sum x^{3}$	

5	nird normal equation b	y least square method i	s []
$\mathbf{A}) \ \sum xy = a \sum x + b \sum x$	$x^2 + c\sum x^3$	B) $\sum y = a \sum x^2 + b \sum x^2$	$\sum x + nc$	
C) $\sum y = na + b \sum x + c$	$\sum x^2$	D) $\sum xy^2 = a\sum x +$	$b\sum x^2 + c\sum x^3$	
15. In Simpson's $\frac{1}{3}$ rule sta	the that $\int_{a}^{b} f(x) dx =$		[]
A) $\frac{h}{2}[(y_0 + y_n) + 2(y_1 +$	$y_2 + \dots + y_{n-1})]$	$B) \frac{h}{3}[(y_0 + y_n) + 2(y_1)]$	$_{1} + y_{2} + \dots + y_{2}$	_{n-1})]
C) $\frac{h}{3}[(y_0 + y_n) + 2(y_2 +$	$y_4 + \dots + 4(y_1 + y_3 + y_3)$	+)] D) No	one	
16. The value of $\int_{0}^{1} \frac{1}{(1+x)^{2}} dx$) dx by Simpson's 1/3	rule(take n=4) is	[]
A) 0.6931	B) 0.5	C) -0.6931	D) None	e
17. If $y = ax^2 + bx + c$ the set	econd normal equation	by least square method	d is []
$\mathbf{A})\sum_{xy=a}x^{3}+b\sum_{xy=a}x^{3}+$	$\int x^2 + c \sum x$	B) $\sum y = a \sum x + b \sum$	$\sum x^2 + c \sum x^3$	
C) $\sum xy^2 = na + b\sum x^2$	$+c\sum x^2$	D) $\sum xy^2 = a\sum x +$	$b\sum x^2 + c\sum x^3$	
18. If $\sum x_i = 15, \sum y_i = 30, \sum y_i = 3$	$\sum x_i y_i = 110, \sum x_i^2 = 5$	$5, n = 4$ and $y = a_0 + a_0$	$a_1 x$ Then $a_0 = [$]
A) 2.2	B) 1.52	C) 1.2		D) 0
10 If $y = a x^2 + a x + a + 1$				
19. If $y = a_0 x + a_1 x + a_2$ the	e second normal equat	ion by least square met	hod is []
19. If $y = a_0 x^3 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^3 + a_$	e second normal equat $\sum x^2 + a_2 \sum x$	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$	hod is [$+a_1\sum x^3 + a_2\sum$]
19. If $y = a_0 x^3 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^3 + a_1 \sum y = a_0 \sum x^3 + a_1 $	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0 \sum$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$	$]x^2$
19. If $y = a_0 x^3 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^3 + a_$	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 5$	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + b_0$ 55, $n = 5$ and $y = a_0 + b_0$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 =$ []] x ²
19. If $y = a_0 x^2 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_$	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 5$ B) 1.52	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0]] x ²]
19. If $y = a_0 x^2 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_$	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 5$ B) 1.52	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0$ 55, $n = 5$ and $y = a_0 + a_0$ C) 1.2	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0]]x ²]
19. If $y = a_0 x^2 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^2 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_$	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 5$ B) 1.52 B) y = -ax ^b	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0 [D) None]] x ²]]
19. If $y = a_0 x^2 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^2$ C) $\sum y = a_0 \sum x^3 + a_1 \sum x^2$ 20. If $\sum x_i = 15$, $\sum y_i = 30$, A) 2.2 21. The Exponential curve is A) $y = ax^b$ 22. The power curve is	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 3$ B) 1.52 B) $y = -ax^{b}$	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0$ 55, $n = 5$ and $y = a_0 + a_0$ C) 1.2 C) $y = ae^{bx}$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0 [D) None []]x ²]]
19. If $y = a_0 x^2 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^2 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_$	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 5$ B) 1.52 B) $y = -ax^{b}$ B) $y = ab^{x}$	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0$ 55, $n = 5$ and $y = a_0 + a_0$ C) 1.2 C) $y = ae^{bx}$ C) $y = -ax^b$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0 [D) None [D) None] [x ²]]]
19. If $y = a_0 x^2 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^2$ C) $\sum y = a_0 \sum x^3 + a_1 \sum x^2$ 20. If $\sum x_i = 15$, $\sum y_i = 30$, A) 2.2 21. The Exponential curve is A) $y = ax^b$ 22. The power curve is A) $y = ax^b$ 23. If $y = a + bx$ the second	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 5$ B) 1.52 B) $y = -ax^{b}$ B) $y = -ax^{b}$ normal equation by let	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0$ 55, $n = 5$ and $y = a_0 + a_0$ C) 1.2 C) $y = ae^{bx}$ c) $y = -ax^b$ east square method is	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0 [D) None [D) None] [x ²]]]
19. If $y = a_0 x + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 $	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 4$ B) 1.52 B) $y = -ax^{b}$ B) $y = -ax^{b}$ normal equation by let B) $y = a \sum x^{2} + b \sum x^{2}$	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0$ 55, $n = 5$ and $y = a_0 + a_0$ C) 1.2 C) $y = ae^{bx}$ east square method is $\sum x^3$ C) $\sum xy = a \sum x + a_0$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0 [D) None [D) None [$a_1 x \sum a_2 + na_2$ $a_1 x \sum a_2 + na_2$ $a_1 x \sum a_2 + na_2$ $a_1 x \sum a_2 + na_2$ [D) None [D) None [D] None [[D] None [D] None [] N] 2x ²]]] 2 2
19. If $y = a_0 x^2 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^2$ C) $\sum y = a_0 \sum x^3 + a_1 \sum x^2$ 20. If $\sum x_i = 15$, $\sum y_i = 30$, A) 2.2 21. The Exponential curve is A) $y = ax^b$ 22. The power curve is A) $y = ax^b$ 23. If $y = a + bx$ the second A) $\sum y = na + b \sum x$ 24. If $y = a + bx$ the first not	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 3$ B) 1.52 B) 1.52 B) $y = -ax^{b}$ B) $y = ab^{x}$ normal equation by let B) $y = a \sum x^{2} + b \sum$ rmal equation by least	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0$ 55, $n = 5$ and $y = a_0 + a_0$ C) 1.2 C) $y = ae^{bx}$ east square method is $\sum x^3$ C) $\sum xy = a \sum x + a_0$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0 [D) None [$b \sum x^2$ D) None [] [x ²]]]]]
19. If $y = a_0 x^2 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_$	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 3$ B) 1.52 S B) $y = -ax^{b}$ mormal equation by left B) $y = a \sum x^{2} + b \sum$ rmal equation by least B) $y = a \sum x^{2} + b \sum$	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + a_0$ 55, $n = 5$ and $y = a_0 + a_0$ C) 1.2 C) $y = ae^{bx}$ east square method is $\sum x^3$ C) $\sum xy = a \sum x + a_0$ square method is $\sum x^3$ C) $\sum y = na^3$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0 [D) None [$b \sum x^2$ D) None [+ $b \sum x^2$ D) None [] [x ²]]]]]]
19. If $y = a_0 x^2 + a_1 x + a_2$ the A) $\sum xy = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 + a_1 \sum x^3 = a_0 \sum x^3 = a_$	e second normal equat $\sum x^{2} + a_{2} \sum x$ $\sum x^{2} + a_{2} \sum x$ $\sum x_{i} y_{i} = 110, \sum x_{i}^{2} = 3$ B) 1.52 B) 1.52 B) $y = -ax^{b}$ B) $y = -ax^{b}$ mormal equation by left B) $y = a \sum x^{2} + b \sum$ rmal equation by least B) $y = a \sum x^{2} + b \sum$ e number of subinterval	ion by least square met B) $\sum x^2 y = a_0 \sum x^4$ D) $\sum xy = a_0 \sum x^3 + b^2$ 55, $n = 5$ and $y = a_0 + b^2$ C) 1.2 C) $y = ae^{bx}$ C) $y = -ax^b$ east square method is $\sum x^3$ C) $\sum xy = a \sum x + b^2$ square method is $\sum x^3$ C) $\sum y = na^2$	hod is [+ $a_1 \sum x^3 + a_2 \sum a_1 \sum x^2 + na_2$ $a_1 x$ Then $a_0 = [$ D) 0 [D) None [$b \sum x^2$ D) None [+ $b \sum x^2$ D) None [+ $b \sum x^2$ D) None [] [x ²]]]]]]

26. By Trapezoidal rule, $\int_{a}^{b} f(x) dx$	lx =			[]
A) $\frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + y_2)]$	++ y_{n-1})]	B) $\frac{h}{2}[(y_0 + y_n)]$	$(-2(y_1 + y_2 +$	+ y _{n-}	1)]
C) $\frac{h}{2}[(y_0 - y_n) + 2(y_1 + y_2)]$	$++y_{n-1})]$	$\mathbf{D}) \ \frac{h}{2}[(y_0 - y_0)]$	$(y_1 + y_2 + y_3) - 2(y_1 + y_3 + y_3) - 2(y_1 + y_3) -$	·+ y _{n-}	1)]
27. In Simpson's $\frac{1}{3}$ rule state the	hat $\int_a^b f(x) \mathrm{dx} =$			[]
A) $\frac{h}{3}[(y_0 + y_n) + 2(y_2 + y_4 +$	$) + 4(y_1 + y_3 +$	$+)] B) \frac{h}{3}[(y_0)]$	$(+ y_n) + 2(y_1 + y_1)$	$_{2} + \dots + y_{r}$	_{n-1})]
C) $\frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 +$	+ y_{n-1})]	D) None			
28. In the general quadrature for A) Trapezoidal rule B)	rmula n=3 gives Simpson's $\frac{1}{3}$ rul	le C) Simpson's	$\frac{3}{8}$ rule D) We	[ddle's rule]
29. The value of $\int_{1}^{2} 1/x dx$ by T	Frapezoidal rule(ta	ake n=4) is		[]
A) 0.6931	B) 0.5	C) -0.6931		D) None	
30. The value of $\int_{0}^{1} \frac{dx}{1+x^2}$ by Si	impson's $\frac{1}{3}$ rule (take n=4) is		[]
A) 0.6854	B) 0.7854		C) 0.8854	D) 0.9854	
31. The value of $\int_{0}^{1} \frac{1}{(1+x)} dx$	by Simpson's 1/3	8 rule(take n=4)	is	[]
A) 0.6931	B) 0.5	C) -0.6931		D) None	
32. The value of $\int_{0}^{1} x^{3} dx$ by Tra	pezoidal rule (take	e n=4) is		[]
A) 0.25 33. Equation of the straight is	B) 1 25	\sim 2.2	-	D) 2 25	
	D) 1.25	C) 2.2	5	D) 3.23]
A) $y = ax - b$ B)	y = a - bx	C) $y = a + bx$	5 D) y =	$a + bx^2$]
A) $y = ax - b$ B) 34. If $y = ax^{b}$ the first normal e A) $na + b\sum x$ B) $n \log a$	y = a - bx quation is $\sum \log y$ $a + b \sum x$ C) a	C) $y = a + bx$ = (n=No. $\sum x + b \sum \log x$	D) $y = D$ of points given D) $n \log a + b$	$[b] 5.25$ $[a + bx^{2}]$ $\sum \log x$]
A) $y = ax - b$ 34. If $y = ax^{b}$ the first normal e A) $na + b\sum x$ B) $n \log a$ 35. In Simpson's $\frac{3}{8}$ rule state the state of the state o	y = a - bx quation is $\sum \log y$ $a + b \sum x$ C) a hat $\int_{a}^{b} f(x) dx =$	C) $y = a + bx$ = (n=No. $\sum x + b \sum \log x$	D) $y = D$ of points given D) $n \log a + b$	$[b] 5.25$ $[a + bx^{2}$ $[\sum \log x$ $[$]]]
A) $y = ax - b$ B) 34. If $y = ax^{b}$ the first normal e A) $na + b\sum x$ B) $n \log a$ 35. In Simpson's $\frac{3}{8}$ rule state th A) $\frac{3h}{8}[(y_{0} + y_{n}) + 3(y_{1} + y_{2})]$	y = a - bx quation is $\sum \log y$ $a + b \sum x$ C) a^{y} hat $\int_{a}^{b} f(x) dx =$ $+ y_{4} \dots + y_{n-1}$	C) $y = a + bx$ $= \underline{\qquad} (n = No.x)$ $\sum x + b \sum \log x$ $+ 2(y_3 + y_6 + y_9)$	D) $y =$ of points given D) $n \log a + b$ + y_n)	$[b] 5.25$ $[a + bx^{2}$ $[\sum \log x$ $[$]]
A) $y = ax - b$ B) 34. If $y = ax^{b}$ the first normal e A) $na + b\sum x$ B) $n \log a$ 35. In Simpson's $\frac{3}{8}$ rule state th A) $\frac{3h}{8}[(y_{0} + y_{n}) + 3(y_{1} + y_{2} + y_{3})]$ B) $\frac{h}{2}[(y_{0} + y_{n}) + 2(y_{2} + y_{3} + y_{3})]$	y = a - bx quation is $\sum \log y$ $a + b \sum x$ C) a hat $\int_{a}^{b} f(x) dx =$ $+ y_{4} \dots + y_{n-1}$ $- \dots + 4(y_{1} + y_{3})$	C) $y = a + bx$ $= \underline{\qquad} (n=No.x)$ $\sum x + b \sum \log x$ $+ 2(y_3 + y_6 + y_9)$ $+ \dots)]$	D) $y =$ of points given D) $n \log a + b$ + y_n)	$[b] 5.25$ $[a + bx^{2}$ $[\sum \log x$ $[$]]

36. If y=9.3,Y=1	ogy then Y=			[]
A) 0.9685	B) 0.9685	C) 0.9685	D) 0.9685		
37. 7. In simpson	i's $\frac{1}{3}$ rule the num	ber of sub intervals should l	be	[]
A) even	B)odd	C)multiple of 3	D) None		
38. In simpson's	$\frac{1}{3}$ rule the number	er of ordinates should be	`		[
] A) Even	B) odd	C) multiple of 3	D) None		
39. In simpson's	$\frac{3}{8}$ rule the number	er of sub intervals should be]]
A) Even	B) odd	C) multiple of 3	D) None		
40. The value of	$\int_0^1 1/(1+x) \mathrm{d}x \mathrm{by}$	v simpson's 1/3 rule(take n=4	4) is	[]
A) 0.693	B) 0.589	C) 0.456	D) 56		

Prepared by: RAJAGOPAL REDDY N

[5M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –V

- 1. a) Tabulate y (0.1), y (0.2), and y (0.3) using Taylor's series method given that [5M] $y^1 = y^2 + x$ and y(0) = 1
 - B) Find the value of y for x=0.4 by Picard's method given that $\frac{dy}{dx} = x^2 + y^2$, y(0)=0 [5M]
- 2. Using Taylor's series method find an approximate value of y at x = 0.2 for the D.E $y^1 2y = 3e^x$, y(0) = 0. Compare the numerical solution obtained with exact solution.[10M]
- 3. A)Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method [5M]

B) Obtain y(0.1) given
$$y^1 = \frac{y - x}{y + x}$$
, y(0)=1 by Picard's method. [5M]

- 4. A) Given that $\frac{dy}{dx} = 1 + xy$ and y(0) = 1 compute y(0.1), y(0.2) using Picard's method [5M]
 - B) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1) =2 and find y(2). [5M]

5. A)Using Runge-Kutta method of second order, compute y(2.5) from $y^1 = \frac{y+x}{x}$ y(2)=2, taking h=0.25 [5M]

B) Solve numerically using Euler's method $y' = y^2 + x$, y(0)=1. Find y(0.1) and y(0.2)

- 6. A)Using Euler's method, solve numerically the equation y¹=x+y, y(0)=1 [5M]
 B) Solve y¹= y-x², y (0) =1 by Picard's method up to the fourth approximation. Hence find the value of y (0.1), y (0.2). [5M]
- 7. A) Use Runge- kutta method to evaluate y(0.1) and y(0.2) given that $y^1=x+y$, y(0)=1 [5M]

B) Solve numerically using Euler's method $y' = y^2 + x^2$, y(0) = 1. Find y(0.1) and y(0.2) [5M]

8. A)Using R-K method of 4th order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0)=1 Find y(0.2) and y(0.4) [6M] B)Obtain Picard's second approximate solution of the initial value problem

$$\frac{dy}{dx} = \frac{x^2}{y^2 + 1}, y(0) = 0$$
[4M]

9. Using R-K method of 4th order find y(0.1),y(0.2) and y(0.3) given that $\frac{dy}{dx} = 1 + xy$, y(0) = 210. A)Find y(0.1) and y(0.2) using R-K 4th order formula given that $y^1 = x^2 - y$ and y(0) = 1 [5M]

B) Using Taylor's series method, solve the equation $\frac{dy}{dx} = x^2 + y^2$ for x = 0.4 given that y = 0 when x = 0. [5M]

Prepared by: RAJAGOPAL REDDY N

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

1)	Successive approximations are used in []
	A) Milne's method B) Picard's method C) Taylor series method D) none	
2)	Which of the following in a step by step method: []
	A) Taylor's series B) Adam's bashforth C)Picard's D) none	
3)	Runge-kutta method is self starting method:]
	A) true B) false C) we can't say D) none	
4)	The second order Runga-kutta formula is []
	A) Euler's methodB) Newton's method	
	C) Modified Euler's method D) none	
5)	Euler's nth term formula is []
	A) $y_n = y_{n-1} + hf(x_{n-1}, y_{n-1})$ B) $y_{n+1} = y_{n-1} + hf(x_{n-1}, y_{n-1})$	
	C) $y_n = y_n + hf(x_n, y_{n-1})$ D) none	
6)	Which of the following is best for solving initial value problems.]
	A) Euler's method B) Modified Euler's method	
	C) Taylor's series method D) Runge-kutta method of order 4	
7)	To obtain reasonable accuracy value in Euler's method, we have to h value is []
	A) SmallB) largeC) 0D) none	
8)	If' 'n' conditions are specified at the initial point, then it is called []
	A) Initial value problemB) final value problem	
	C) Boundary value problem D) None	
9)	If 'n' conditions are specified at two or more points, then it is called []
	A) Initial value problem B) final value problem	
1.0	C) Boundary value problem D) None	-
10)	The first order Runga-kutta formula is	ļ
	A) Euler's method B) Newton's method	
1 1 \	C) Modified Euler's method D) None	-
11)) The second order Runge-Kutta formula is $y_1 = $	
	A) $y_0 + (k_1 + k_2)$ B) $y_0 - (k_1 + k_2)$ C) $y_0 + \frac{1}{2}(k_1 + k_2)$ D) $y_0 - \frac{1}{2}(k_1 + k_2)$	
12)) The n th difference of a n th degree polynomial is []
	A) ConstantB) ZeroC) oneD) None	
13)) Successive approximations used inmethod []
	A) Euler's B) Taylor's C) Picard's D) R-K	
14)) The taylor's for $f(x) = \log (1+x)$ is []
	A) $x - \frac{x^2}{2} + \frac{x^3}{3} - \dots $ B) $x + \frac{x^3}{3} - \dots $ C) Both a and b D) None	

UNIT –V

15) Solve $y^1 = x + y, y(0)$	0) = 1, find $y_1 = y(0)$ B) 1.26 C) 2.1	.1) by using Euler's m	ethod []
16) The R-K method is a	n meth	od D) 1.00	ſ	1
A) Picard's method	B) Euler's r	nethod	Ľ	1
C) Milne's method	D) self- star	ting method		
17) Using Euler's method	d y ¹ = $\frac{y-x}{y+x}$, y(0)=1 and	h=0.02give y ₁ =	[]
A) 0.02	B) 1.02 C) 2.0	2 D)	3.02	
18) Using Euler's method	$d y^{1} = \frac{y - x}{y + x}$, y(0)=1 then	n the picard's method	the value of	
$y^{1}(x) =$	y+x]	1
A) $1 + 2\log(1+x)$	B) 1-x+2log(1+x)	C) $x+2\log(1+x)$	D) Non	e
19) If $\frac{dy}{dx} = x-y$ and $y(0)=$	1 then by picard's met	hod the value of $y^1(1)$	is []
A) 0.905	B) 1.905	C) 2.905 D) N	None	
20) Euler's first approxin	nation formula is		[]
A) $y_1 = y_1 + hf(x_1,$	y_1)	B) $y_1 = y_1 + hf(x_0,$	y_0)	
C) $y_1 = y_0 + hf(x_0, y_1)$	y_0)	D) $y_0 = y_0 + hf(x_0,$	y ₀)	-
21) Second order R-K Me	ethod formula is	D) 1(1		J
A) $y_1 = y_0 + \frac{1}{2}(k_1 + \frac{1}{2})$	(k_2)	B) $y_1 = y_0 + \frac{1}{4}(k_1 + \frac{1}{4})$	$-4k_2 + k_3$	
C) $y_1 = y_0 + \frac{1}{6}(k_1 + $	+ k ₂)	D) $y_1 = y_1 + \frac{1}{2}(k_1 + \frac{1}{2})$	⊦ k ₂)	
22) The integrating factor	r of $\frac{dy}{dx} - y = x$		[]
A) e^{2x}	B) e^{-2x}	C) e^x	D) e^{-x}	
23) The second order Run	nge-Kutta formula is y	v ₁ =	, []
A) $y_0 + (k_1 + k_2)$	B) $y_0 - (k_1 + k_2)$	C) $y_0 + \frac{1}{2}(k_1 + k_2)$	D) $y_0 - \frac{1}{2}(k_1 - k_2)$	+ k ₂)
24) Using Euler's method	$d v^{1} = \frac{y - x}{x}$, $v(0) = 1$ and	$h=0.02$ give $v_1=$	[1
A) 0.02	B)1 02	C)2.02	D) 2 02	L
25) Runge-kutta method	is self starting method	(C)2.02	D) 3.02	1
A) False	B) we can't say	\mathbf{C}) True	D) None	Ţ
26) The integrating factor	$\int dy$,	ŕ	1
20) The integrating factor	$1 \text{ of } \frac{dx}{dx} + y = x$		L	1
A) e^{2x}	B) e^{-2x}	C) e^x	D) e^{-x}	
27) Using Euler's method	$d y^{1} = \frac{y-x}{y+x}$, y(0)=1 and	$h=0.02$ give $y_1=$	[]
A) 0.02	B)1.02	C)2.02	D) 3.0	02
28) If $\frac{dy}{dt} = x - y$ and $y(0) =$	=1 then by Picard's met	thod the value of $y^{1}(1)$	is [1
A) 0.905	B) -0.905	C) 1.905	D) None	-
29) If $y' = -y, y(0) = 1$ by	y Euler's method the va	alue of $v(0.1)$ is	Ì	1
A) 0.9	B) 0.1	C) -1	D) -0.9	-
30) If $\frac{dy}{dt} = 1 + xy, y(0) =$	1 then by Picard's met	hod the value of $y^{1}(x)$	is []
ax r^2	r^2	r^2	r^2	
A) $1 + x + \frac{x}{2}$	B) $1 - x - \frac{x}{2}$	C) $1 + \frac{x}{2}$	D) $x + \frac{x}{2}$	
L	L	L	Ĺ	

31) The integrating factor of $\frac{dy}{dx} + \frac{y}{x} = x$] ſ A) x^2 B) $\log x$ \mathbf{C}) x D) e^{-x} 32) If $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0) = 1, and h=0.2 then the value of k_1 in 4th order R-K method is A) 0 B)0.1 C)0.2 D) 0.3 33) Using Euler's method $y^1 = \frac{y-x}{y+x}$, y(0)=1 and h=0.01 give $y_1=...$ 1 ſ 1 A) 0.01 **B**) 1.01 C) 2.01 D) 3.01 34) If $\frac{dy}{dx} = y - x^2$, y(0) = 1, then by Picard's method the value of $y^1(x)$ is.... [1 A) $1 - x + \frac{x^2}{2}$ B) $1 + x - \frac{x^3}{2}$ C) $1 - x - \frac{x^3}{3}$ D) $-1 + x + \frac{x^2}{2}$ 35) The integrating factor of $\frac{dy}{dx} - \frac{y}{x} = x$ ſ 1 A) x^2 B) -xC) x36) The Third order R-K formula is D) e^{-x} B) $y_1 = y_0 + \frac{1}{6} (k_1 - 4k_2 + k_3)$ A) $y_1 = y_0 + \frac{1}{6}(k_1 + k_2 + k_3)$ C) $y_1 = y_0 + \frac{1}{6}(k_1 + 4k_2 + k_3)$ D) $y_1 = y_0 + \frac{1}{6}(k_1 + k_2 + 4k_3)$ 37) Using Euler's method $y^1 = \frac{y-x}{y+x}$, y(0)=1 and h=0.04 give $y_1=...$ 1 A) 0.04 C)2.04 D) 3.04 38) If $\frac{dy}{dx}$ = x-y and y(0)=1 then by Picard's method the value of y¹(0.2) is ... [A) 0.72 B) -0.72 C) 0.82 D) None 1 A) 0.72 C) 0.82 D) None 39) If y' = -y, y(0) = 0 by Euler's method the value of y(0.1) is 1 ſ B) 0.1 C) -1 **D**) 0 40) If $\frac{dy}{dx} = x + y$, y(0) = 1, then by Picard's method the value of $y^1(x)$ is.... ſ 1 A) $1 - x + \frac{x^2}{2}$ B) $1 + x - \frac{x^2}{2}$ C) $1 + x + \frac{x^2}{2}$ D) $-1 + x + \frac{x^2}{2}$

Prepared by: RAJAGOPAL REDDY N